Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Environ Res Public Health ; 11(8): 8581-96, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25141003

RESUMO

Nine types of solid lipid nanoparticle (SLN) formulations were produced using tripalmitin (TPM), glyceryl monostearate (GM) or stearic acid (SA), stabilized with lecithin S75 and polysorbate 80. Formulations were prepared presenting PI values within 0.25 to 0.30, and the physicochemical properties, stability upon storage and biocompatibility were evaluated. The average particle size ranged from 116 to 306 nm, with a negative surface charge around -11 mV. SLN presented good stability up to 60 days. The SLN manufactured using SA could not be measured by DLS due to the reflective feature of this formulation. However, TEM images revealed that SA nanoparticles presented square/rod shapes with an approximate size of 100 nm. Regarding biocompatibility aspects, SA nanoparticles showed toxicity in fibroblasts, causing cell death, and produced high hemolytic rates, indicating toxicity to red blood cells. This finding might be related to lipid type, as well as, the shape of the nanoparticles. No morphological alterations and hemolytic effects were observed in cells incubated with SLN containing TPM and GM. The SLN containing TPM and GM showed long-term stability, suggesting good shelf-life. The results indicate high toxicity of SLN prepared with SA, and strongly suggest that the components of the formulation should be analyzed in combination rather than separately to avoid misinterpretation of the results.


Assuntos
Lipídeos/química , Nanopartículas/toxicidade , Tensoativos/química , Animais , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/ultraestrutura , Hemólise/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Células NIH 3T3 , Nanopartículas/química , Tamanho da Partícula
2.
J Chromatogr Sci ; 46(6): 505-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18647471

RESUMO

A rapid and effective isocratic chromatographic procedure is successfully developed to determinate methotrexate (MTX) entrapment efficiency (EE) in polymeric nanocapsules using reversed-phase high-performance liquid chromatography. The method employed a RP-C(18) Shimadzu Shim-pack CLC-ODS (150 mm x 4.6 mm, 5 microm) column with mobile phase constituted by a mixture of water-acetonitrile-tetrahydrofuran (65:30:5 v/v/v; pH 3.0) at a flow rate of 0.8 mL/min. The eluate is monitored with a UV detector set at 313 nm. The parameters used in the validation process are: linearity, specificity, precision, accuracy, and limit of quantitation (LOQ). The linearity is evaluated by a calibration curve in the concentration range of 10-50 microg/mL and presented a correlation coefficient of 0.9998. The polymers (PLA or PLA-PEG), oil, and surfactants used in the nanocapsule formulation did not interfere with analysis and the recovery was quantitative. The intra and inter-day assay relative standard deviation were less than 0.72%. Results are satisfactory, and the method proved to be adequate for the determination of methotrexate in nanocapsules formulations.


Assuntos
Antineoplásicos/química , Cromatografia Líquida de Alta Pressão/métodos , Metotrexato/química , Nanocápsulas , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...